Molecular characterization of Plasmodium falciparum S-adenosylmethionine synthetase.

نویسندگان

  • P K Chiang
  • M E Chamberlin
  • D Nicholson
  • S Soubes
  • X Su
  • G Subramanian
  • D E Lanar
  • S T Prigge
  • J P Scovill
  • L H Miller
  • J Y Chou
چکیده

S-Adenosylmethionine (AdoMet) synthetase (SAMS: EC 2.5.1.6) catalyses the formation of AdoMet from methionine and ATP. We have cloned a gene for Plasmodium falciparum AdoMet synthetase (PfSAMS) (GenBank accession no. AF097923), consisting of 1209 base pairs with no introns. The gene encodes a polypeptide (PfSAMS) of 402 amino acids with a molecular mass of 44844 Da, and has an overall base composition of 67% A+T. PfSAMS is probably a single copy gene, and was mapped to chromosome 9. The PfSAMS protein is highly homologous to all other SAMS, including a conserved motif for the phosphate-binding P-loop, HGGGAFSGKD, and the signature hexapeptide, GAGDQG. All the active-site amino acids for the binding of ADP, P(i) and metal ions are similarly preserved, matching entirely those of human hepatic SAMS and Escherichia coli SAMS. Molecular modelling of PfSAMS guided by the X-ray crystal structure of E. coli SAMS indicates that PfSAMS binds ATP/Mg(2+) in a manner similar to that seen in the E. coli SAMS structure. However, the PfSAMS model shows that it can not form tetramers as does E. coli SAMS, and is probably a dimer instead. There was a differential sensitivity towards the inhibition by cycloleucine between the expressed PfSAMS and the human hepatic SAMS with K(i) values of 17 and 10 mM, respectively. Based on phylogenetic analysis using protein parsimony and neighbour-joining algorithms, the malarial PfSAMS is closely related to SAMS of other protozoans and plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-inhibition of Plasmodium falciparum S-adenosylmethionine decarboxylase/ornithine decarboxylase reveals perturbation-specific compensatory mechanisms by transcriptome, proteome, and metabolome analyses.

Polyamines are ubiquitous components of all living cells, and their depletion usually causes cytostasis, a strategy employed for treatment of West African trypanosomiasis. To evaluate polyamine depletion as an anti-malarial strategy, cytostasis caused by the co-inhibition of S-adenosylmethionine decarboxylase/ornithine decarboxylase in Plasmodium falciparum was studied with a comprehensive tran...

متن کامل

Biochemical characterisation and novel classification of monofunctional S-adenosylmethionine decarboxylase of Plasmodium falciparum.

Plasmodium falciparum like other organisms is dependent on polyamines for proliferation. Polyamine biosynthesis in these parasites is regulated by a unique bifunctional S-adenosylmethionine decarboxylase/ornithine decarboxylase (PfAdoMetDC/ODC). Only limited biochemical and structural information is available on the bifunctional enzyme due to the low levels and impurity of an instable recombina...

متن کامل

Molecular Evidence on Changing Pattern of Mixed Plasmodium falciparum and P. vivax Infections during Year-Round Transmission of Malaria in Chahbahar, Iran

Mixed malaria infections, Plasmodium falciparum and P. vivax, are suspected to occur at a greater frequency than is detected by conventional light microscopy. In order to determine the year round pattern of transmission and the frequency of mixed infections in malaria endemic area, we carried out a prospective comparison of diagnosis by conventional light microscopy and nested PCR in Chahbahar ...

متن کامل

In the human malaria parasite Plasmodium falciparum, polyamines are synthesized by a bifunctional ornithine decarboxylase, S-adenosylmethionine decarboxylase.

The polyamines putrescine, spermidine, and spermine are crucial for cell differentiation and proliferation. Interference with polyamine biosynthesis by inhibition of the rate-limiting enzymes ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) has been discussed as a potential chemotherapy of cancer and parasitic infections. Usually both enzymes are individually tran...

متن کامل

Novel S-adenosyl-L-methionine decarboxylase inhibitors as potent antiproliferative agents against intraerythrocytic Plasmodium falciparum parasites☆

S-adenosyl-l-methionine decarboxylase (AdoMetDC) in the polyamine biosynthesis pathway has been identified as a suitable drug target in Plasmodium falciparum parasites, which causes the most lethal form of malaria. Derivatives of an irreversible inhibitor of this enzyme, 5'-{[(Z)-4-amino-2-butenyl]methylamino}-5'-deoxyadenosine (MDL73811), have been developed with improved pharmacokinetic profi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 344 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999